
Exam Advanced Quantum Mechanics

Before you start, read the following:

• There are 4 problems for a total of 40 points.

• Start each problem on a new sheet of paper.

• Write your name and student number on each sheet of paper.

• Illegible handwriting will not be graded.

• Good luck!





Problem 1 (45 minutes; 10 points in total)

Consider a tritium atom, made up of a triton 3H nucleus with Z = 1 and an
electron in its ground state with n = 1, ` = 0, m = 0. Suppose the triton
undergoes β decay,

3H→ 3He + e− + ν ,

so that the triton turns into a helion nucleus and the nuclear charge suddenly
increases to Z = 2. The β electron is emitted with high energy ∼ 15 keV and
leaves the atom very rapidly. Thus, at the time t0 of the decay an ionized 3He+

atom is formed and the wave function of the remaining bound electron at t0 is
still the same as in tritium.

3 pnts (a) Give the Hamiltonian H1 of the atomic electron before the decay and
the Hamiltonian H2 of this electron after the decay (when the potential
energy has suddenly changed). What are the Bohr energy levels of the
electron in the 3He+ ion in Rydberg, its Bohr radius, and its ground-state
wave function?

2 pnts (b) Give an expression for the probability P (n, `,m) that the atomic electron
ends up in the state |n, `,m〉 of 3He+ after the decay. Show that only
the probabilities Pn = P (n, 0, 0) are nonzero.

3 pnts (c) Calculate the probability P1 that the atomic electron ends up in the
ground state of 3He+. Show that it is P1 = 0.70.

2 pnts (d) Calculate the total probability that the electron ends up in any bound
state of 3He+. Use

∞∑
n=2

Pn = 0.27 .

Explain why it does not equal 1.

The ground-state wave function for a hydrogen-like system is

ψn=1,`=0,m=0(~r ) =
1√
π

(
Z

a0

)3/2

e−Zr/a0 , a0 =
h̄

αmec
.



Problem 2 (45 minutes; 10 points in total)

2 pnts (a) The q components (q = −k, . . . , k) of an irreducible spherical tensor of
rank k can be written in terms of spherical harmonics Y m

` (θ, φ) = Y m
` (n̂)

as

T (k)
q = Y m=q

`=k (~V ) .

Give the components V
(1)
m of a spherical tensor of rank 1 (that is, a

vector), in terms of the cartesian components. Give the spherical com-
ponents of ~r = (x, y, z).

3 pnts (b) Give the Wigner-Eckart theorem for the matrix element of a tensor op-
erator with respect to angular-momentum eigenstates in formula form.
Formulate in words what it implies and in which way it is useful.

3 pnts (c) Consider a spinless particle bound to a fixed center by a central force
potential. Relate, as much as possible, the matrix elements

〈n′, `′,m′| ∓ 1√
2

(x± iy)|n, `,m〉 and 〈n′, `′,m′|z|n, `,m〉 ,

by using only the Wigner-Eckart theorem. State explicitly when the
matrix elements are nonzero.

2 pnts (d) Do the same problem as in (c) for the wave functions

ψ(~r ) = Rn`(r)Y
m
` (θ, φ) .

Y 0
1 =

√
3

4π
cos θ

Y ±11 = ∓
√

3

8π
sin θ e±iφ



Problem 3 (45 minutes; 10 points in total)

In the path-integral formalism, the probability for a particle to go from position
~r1 at time t1 to position ~r2 at time t2 is given by P (2, 1) = |U(2, 1)|2, where
the propagator U(2, 1) is given by the “sum over paths”

U(2, 1) = N21

∑
a

exp [iSa(t2, t1)/h̄] ,

where N21 is a normalization constant and Sa(t2, t1) is the classical action for
path a from x1 = (~r1, t1) to x2 = (~r2, t2).

2 pnts (a) Show if a path from x1 to x2 consists of two successive segments with an
intermediate point x3 that U(2, 1) =

∫
U(2, 3)U(3, 1)d3~r3.

3 pnts (b) Consider the two-slits experiment in the Figure. Assume that only the
classical paths need to be taken into account. Give an expression for
U(D,A). Use the notation U(2, 1) = N21 exp(iφ) for the free-particle
propagator.

3 pnts (c) Show that the probability distribution (intensity pattern) on the screen
reads P (D,A) = 2I(1 + cos θ) and give expressions for I and for θ.
Discuss the interference pattern on the screen.

2 pnts (d) Show that θ = p|r1 − r2|/h̄, where p = m(r1 + r2)/2τ is the mean
momentum. From considering the first maximum, show that the relation
λ = h/p holds.

The propagator for a free particle of mass m is given by

U(2, 1) =

[
m

2πh̄i(t2 − t1)

]3/2
exp

[
im

2h̄

(x2 − x1)2

t2 − t1

]
≡ N21 exp(iφ) .



Problem 4 (45 minutes; 10 points in total)

Consider a central source that sends particles to three measuring devices, op-
erated by Alice, Bob, and Charlotte, which are space-like separated from each
other. Each device has two settings, labelled X and Y , and records events by
an “up” or “down” result. The records will thus have the label X1, X2, X3,
Y1, Y2, or Y3, and each will give a result +1 or −1.

2 pnts (a) The experimentalists discover that certain products are not random.
They find that, whatever the individual recordings, X1Y2Y3 = Y1X2Y3 =
Y1Y2X3 = +1. Argue how in classical mechanics such correlations could
occur and show that X1X2X3 = +1.

In fact, the observables measured are Xi = σ
(i)
x , Yi = σ

(i)
y (i = 1, 2, 3), where

~S(i) = h̄ ~σ(i)/2 is the spin vector of particle i. The source sends out the three
particles in the state

ψ(1, 2, 3) =
(
χ
(1)
↑ χ

(2)
↑ χ

(3)
↑ − χ

(1)
↓ χ

(2)
↓ χ

(3)
↓

)
/
√

2 ,

where χ
(i)
↑ and χ

(i)
↓ are the eigenstates of σ

(i)
z with eigenvalues +1 and −1.

3 pnts (b) Calculate Xi ψ(1, 2, 3) and Yi ψ(1, 2, 3) for i = 1, 2, 3. Check the results
for X1Y2Y3, Y1X2Y3, and Y1Y2X3 given above.

2 pnts (c) Calculate X1X2X3 ψ(1, 2, 3).

3 pnts (d) Discuss the implications of these findings for the Einstein-Podolsky-
Rosen problem, similar to the Bell inequalities for two particles.


