Exam Advanced Quantum Mechanics

Before you start, read the following:

- There are 4 problems for a total of 40 points.
- Start each problem on a new sheet of paper.
- Write your name and student number on each sheet of paper.
- Illegible handwriting will not be graded.
- Good luck!

Problem 1 (45 minutes; 10 points in total)

Consider a tritium atom, made up of a triton ${ }^{3} \mathrm{H}$ nucleus with $Z=1$ and an electron in its ground state with $n=1, \ell=0, m=0$. Suppose the triton undergoes β decay,

$$
{ }^{3} \mathrm{H} \rightarrow{ }^{3} \mathrm{He}+e^{-}+\bar{\nu},
$$

so that the triton turns into a helion nucleus and the nuclear charge suddenly increases to $Z=2$. The β electron is emitted with high energy $\sim 15 \mathrm{keV}$ and leaves the atom very rapidly. Thus, at the time t_{0} of the decay an ionized ${ }^{3} \mathrm{He}^{+}$ atom is formed and the wave function of the remaining bound electron at t_{0} is still the same as in tritium.

3 pnts (a) Give the Hamiltonian H_{1} of the atomic electron before the decay and the Hamiltonian H_{2} of this electron after the decay (when the potential energy has suddenly changed). What are the Bohr energy levels of the electron in the ${ }^{3} \mathrm{He}^{+}$ion in Rydberg, its Bohr radius, and its ground-state wave function?

2 pnts (b) Give an expression for the probability $P(n, \ell, m)$ that the atomic electron ends up in the state $|n, \ell, m\rangle$ of ${ }^{3} \mathrm{He}^{+}$after the decay. Show that only the probabilities $P_{n}=P(n, 0,0)$ are nonzero.

3 pnts (c) Calculate the probability P_{1} that the atomic electron ends up in the ground state of ${ }^{3} \mathrm{He}^{+}$. Show that it is $P_{1}=0.70$.

2 pnts (d) Calculate the total probability that the electron ends up in any bound state of ${ }^{3} \mathrm{He}^{+}$. Use

$$
\sum_{n=2}^{\infty} P_{n}=0.27
$$

Explain why it does not equal 1.

The ground-state wave function for a hydrogen-like system is

$$
\psi_{n=1, \ell=0, m=0}(\vec{r})=\frac{1}{\sqrt{\pi}}\left(\frac{Z}{a_{0}}\right)^{3 / 2} e^{-Z r / a_{0}}, \quad a_{0}=\frac{\hbar}{\alpha m_{e} c}
$$

Problem 2 (45 minutes; 10 points in total)

2 pnts (a) The q components $(q=-k, \ldots, k)$ of an irreducible spherical tensor of rank k can be written in terms of spherical harmonics $Y_{\ell}^{m}(\theta, \phi)=Y_{\ell}^{m}(\hat{n})$ as

$$
T_{q}^{(k)}=Y_{\ell=k}^{m=q}(\vec{V})
$$

Give the components $V_{m}^{(1)}$ of a spherical tensor of rank 1 (that is, a vector), in terms of the cartesian components. Give the spherical components of $\vec{r}=(x, y, z)$.

3 pnts (b) Give the Wigner-Eckart theorem for the matrix element of a tensor operator with respect to angular-momentum eigenstates in formula form. Formulate in words what it implies and in which way it is useful.

3 pnts (c) Consider a spinless particle bound to a fixed center by a central force potential. Relate, as much as possible, the matrix elements

$$
\left\langle n^{\prime}, \ell^{\prime}, m^{\prime}\right| \mp \frac{1}{\sqrt{2}}(x \pm i y)|n, \ell, m\rangle \quad \text { and } \quad\left\langle n^{\prime}, \ell^{\prime}, m^{\prime}\right| z|n, \ell, m\rangle
$$

by using only the Wigner-Eckart theorem. State explicitly when the matrix elements are nonzero.

2 pnts (d) Do the same problem as in (c) for the wave functions

$$
\psi(\vec{r})=R_{n \ell}(r) Y_{\ell}^{m}(\theta, \phi) .
$$

$$
\begin{aligned}
Y_{1}^{0} & =\sqrt{\frac{3}{4 \pi}} \cos \theta \\
Y_{1}^{ \pm 1} & =\mp \sqrt{\frac{3}{8 \pi}} \sin \theta e^{ \pm i \phi}
\end{aligned}
$$

Problem 3 (45 minutes; 10 points in total)
In the path-integral formalism, the probability for a particle to go from position \vec{r}_{1} at time t_{1} to position \vec{r}_{2} at time t_{2} is given by $P(2,1)=|U(2,1)|^{2}$, where the propagator $U(2,1)$ is given by the "sum over paths"

$$
U(2,1)=N_{21} \sum_{a} \exp \left[i S_{a}\left(t_{2}, t_{1}\right) / \hbar\right]
$$

where N_{21} is a normalization constant and $S_{a}\left(t_{2}, t_{1}\right)$ is the classical action for path a from $x_{1}=\left(\vec{r}_{1}, t_{1}\right)$ to $x_{2}=\left(\vec{r}_{2}, t_{2}\right)$.

2 pnts (a) Show if a path from x_{1} to x_{2} consists of two successive segments with an intermediate point x_{3} that $U(2,1)=\int U(2,3) U(3,1) \mathrm{d}^{3} \vec{r}_{3}$.

3 pnts (b) Consider the two-slits experiment in the Figure. Assume that only the classical paths need to be taken into account. Give an expression for $U(D, A)$. Use the notation $U(2,1)=N_{21} \exp (i \phi)$ for the free-particle propagator.

3 pnts (c) Show that the probability distribution (intensity pattern) on the screen reads $P(D, A)=2 I(1+\cos \theta)$ and give expressions for I and for θ. Discuss the interference pattern on the screen.

2 pnts (d) Show that $\theta=p\left|r_{1}-r_{2}\right| / \hbar$, where $p=m\left(r_{1}+r_{2}\right) / 2 \tau$ is the mean momentum. From considering the first maximum, show that the relation $\lambda=h / p$ holds.

The propagator for a free particle of mass m is given by

$$
U(2,1)=\left[\frac{m}{2 \pi \hbar i\left(t_{2}-t_{1}\right)}\right]^{3 / 2} \exp \left[\frac{i m}{2 \hbar} \frac{\left(x_{2}-x_{1}\right)^{2}}{t_{2}-t_{1}}\right] \equiv N_{21} \exp (i \phi)
$$

Problem 4 (45 minutes; 10 points in total)

Consider a central source that sends particles to three measuring devices, operated by Alice, Bob, and Charlotte, which are space-like separated from each other. Each device has two settings, labelled X and Y, and records events by an "up" or "down" result. The records will thus have the label X_{1}, X_{2}, X_{3}, Y_{1}, Y_{2}, or Y_{3}, and each will give a result +1 or -1 .

2 pnts (a) The experimentalists discover that certain products are not random. They find that, whatever the individual recordings, $X_{1} Y_{2} Y_{3}=Y_{1} X_{2} Y_{3}=$ $Y_{1} Y_{2} X_{3}=+1$. Argue how in classical mechanics such correlations could occur and show that $X_{1} X_{2} X_{3}=+1$.

In fact, the observables measured are $X_{i}=\sigma_{x}^{(i)}, Y_{i}=\sigma_{y}^{(i)}(i=1,2,3)$, where $\vec{S}^{(i)}=\hbar \vec{\sigma}^{(i)} / 2$ is the spin vector of particle i. The source sends out the three particles in the state

$$
\psi(1,2,3)=\left(\chi_{\uparrow}^{(1)} \chi_{\uparrow}^{(2)} \chi_{\uparrow}^{(3)}-\chi_{\downarrow}^{(1)} \chi_{\downarrow}^{(2)} \chi_{\downarrow}^{(3)}\right) / \sqrt{2}
$$

where $\chi_{\uparrow}^{(i)}$ and $\chi_{\downarrow}^{(i)}$ are the eigenstates of $\sigma_{z}^{(i)}$ with eigenvalues +1 and -1 .
3 pnts (b) Calculate $X_{i} \psi(1,2,3)$ and $Y_{i} \psi(1,2,3)$ for $i=1,2,3$. Check the results for $X_{1} Y_{2} Y_{3}, Y_{1} X_{2} Y_{3}$, and $Y_{1} Y_{2} X_{3}$ given above.
${ }_{2}$ pnts (c) Calculate $X_{1} X_{2} X_{3} \psi(1,2,3)$.
3 pnts (d) Discuss the implications of these findings for the Einstein-PodolskyRosen problem, similar to the Bell inequalities for two particles.

